New and Emerging JTAG Standards: Changing the Paradigm of Board Test
(A tutorial)

Artur Jutman

November 23th, 2010
Drammen, NORWAY
Presentation Outline

• Introduction
• Overview of the standards
• IEEE 1149.7
• IEEE P1149.1-2011
• IEEE P1149.8.1
• IEEE P1687
• Conclusions & Discussion
What’s up!?

- The world went crazy…
- IJTAG
- SJTAG
- cJTAG
- CJTAG
- dot7
- dot8.1
- dot1-2011
- what’s the reason?
The test access problem...

Limited access (nail probing) for test, measurement, diagnostics

- Open fault
- Short fault
- Conductive layers
- Crack
- BGA
- IC
- PCB
The test access problem…

Limited access (nail probing) for test, measurement, diagnostics

Such a slide is traditionally shown when introducing the Boundary Scan…

… already for more than 20 years!!!

“Test access is a problem”

“…bed of nails…”

“…BGA…”
Test Access Via Boundary Scan

Typical case: the more BGAs on board, the better the test access
Test Access: Past and Present

- **Past**: test access was a problem
- **Present**: good test access by Boundary Scan combined with AOI, Functional Test, Flying Probe, etc.

Test access by typical test methods:

- Boundary Scan
- AOI and AXI
- Functional Testing
- Flying Probe
- In-Circuit Testing
- Extended BS
Test Access: The Near Future

- Test access is not a problem due to extensive usage of DFT standards and rules
- But there are new problems and challenges!
 - High speed memories (e.g. DDR3, GDDR5)
 - Parallel buses with timing-critical (accurate) protocols
 - High-speed serial buses (e.g. USB 3)
 - Extensive usage of LVDS interconnections
 - Usage of different signaling standards – reconfigurable IO
 - Growing importance of dynamic defects – delays, crosstalk (signal integrity)
 - Flash programming: size of flash images doubles every 12 months
 - Sometimes ICs need to be again tested after soldering
- BS cannot cope with signaling & speed issues any longer
- Result: the test application paradigm is changing!
In the near future:

- Boundary scan is no longer a test application method but a **way to communicate** with test application mechanisms.
- Test application needs to be done by embedded instruments specifically designed to communicate with a target device/bus or to test/monitor/diagnose specific faults.
- Performance of the JTAG-based data transfer mechanism needs to be improved.
New Standards and Their Applications

- IEEE 1149.7 – improved **flexibility** of the JTAG bus by relaxing topology requirements and by addressing resources; potential data throughput improvements
- IEEE P1149.8.1 – improved **observability** for measurement (from the JTAG standpoint) by implementing a capacitive sensing technology
- IEEE P1149.1-2011 – solves **signaling** issues on the buses by driver initialization procedures
- IEEE P1687 – introduces the concept of **embedded instrumentation** for test application, measurement and diagnosis tasks
- Processor emulation standards (e.g. NEXUS) and solutions – converts a **MPU** into a test instrument
New and Emerging Standards Combined

Board or chip

Instruments

- IEEE P1687
- IEEE 1149.7
- IEEE 1149.1
- IEEE P1149.1-2011
Overview of IEEE 1149.7

- IEEE Standard 1149.7: IEEE Standard for Reduced-pin and Enhanced-functionality Test Access Port and Boundary Scan Architecture

- Status: Ratified by the IEEE in Dec 2009
The Purpose of 1149.7

• 1149.7 is **not** a replacement for 1149.1
• 1149.7 uses 1149.1 as its foundation
• 1149.7 provides 1149.1 extensions
• 1149.7 provides 2-pin operating modes
• 1149.7 provides a standard gateway to the pins
• 1149.7 is a complementary superset of the 1149.1

Implementation Ready

• DTS and TS IP available from **IPeXtreme**
• Verification solutions available from **Globetech**
• Tool support available from major BS tool vendors
Main Benefits of 1149.7

- **Power consumption**: Test logic power-down
- **Performance**:
 - Shortened multi-chip scan chains
 - Glue-less star configuration
 - Faster downloads to target
 - Equivalent performance with fewer pins
- **Pins**: reduce pin usage while adding functions
- **Instrumentation**: adds a gateway to P1687 instruments
- **Flexibility**: support of systems-in-packages (SiP), systems-on-chips (SoC), 3D chips.
Compatibility with 1149.1

- The 1149.7 provides for a chip-level 1149.7 Controller that bridges the 1149.1-accessible System Test Logic to the two wires of the chip-level 1149.7

- The chip-level 1149.1 structures are preserved (TAP Controller, chip-level BS register, EXTEST, PRELOAD, and SAMPLE instructions)

- Conventional 1149.1 is based on scan operations on test data, hence TMS

- Control extensions are overlaid on sequences of TAP Controller states
IEEE 1149.1 Extensions

- Class T0 – Ensures IEEE Compliance for chips with multiple TAPs
- Class T1 – Adds control functions (e.g. functional reset, power)
- Class T2 – Adds performance features for Series configurations
- Class T3 – Adds Star topology configuration

Advanced Two-Pin Operation

- Class T4 – Adds two pin operation
- Class T5 – Adds instruction/custom pin use to two pin operation

Regardless of which capability class is implemented, a given 1149.7 must implement all of the mandatory features of its own class as well as those of all lower-numbered classes (T0 < T5)
Capability Class T1

Zero-bit DR scan (ZBS)

The extended control mechanism operates without disruption to the 1149.1 TAP state machine.

It uses a particular state sequence, which is based on normal 1149.1 operations, to initiate 1149.7-defined action
Capability Class T1

- Commands are recognized by counting the number of TCK ticks in the Shift-DR (without use of TDI/TDO pins)
- Commands are given in two scans that immediately follow the completion of the non-zero-bit DR scan that locked the ZBS count
- The primary command words are coded in 5 bits (max 31 TCKs)
- All commands include two such parts for a total code length of 10 bits
- T1 provides 4 modes of power management, e.g.:
 - allow power down if TCK stops at logic one for more than 1 ms
 - allow power down if the device is in the Test-Logic-Reset state
Higher Capability Classes

- Additional classes add scan formats, direct addressability, packetization of scan data (TMS, TDI, and/or TDO information) onto the TMS wire (hence, redesignated TMSC), and finally packetization of non-scan information onto TMSC to provide for transport of background and/or custom data.

- See more details in the standard!
2-Wire Operation

1149.1

Shift State A

\[I \quad I \quad TDI \quad TDI \quad TDO \quad TDO \]

\[O \quad O \quad TMS \quad TMS \quad RTCK \quad RTCK \]

\[S \quad S \quad \]

\[R \quad R \quad \]

\[\text{Shift State B} \]

1149.7

\[I \quad S \quad R \quad O \quad I \quad S \quad R \quad O \quad \]

\[\text{Shift State A} \quad \text{Shift State B} \]

TMSC

TCK

TCK

TCK
2-Wire Operation

SW Driver

JTAG Controller

Core A

Core B

Mode=JTAG
Mode=advanced
Overview of IEEE 1149.1-2011

- Status: Draft (activities started late 2009)
The Purpose of 1149.1-2011

- Standardize initialization of complex I/Os prior to test
- Better support and relaxed rules for differential drivers/receivers
- Support for no-connect pins in packages
- Improved support for linkage-ground-power pins
- SAMPLE - request permissions to capture static values on high speed advanced I/O pins
- Clarification on use of TRST
New Features

- **INIT_SETUP / INIT_RUN**
 - Configure on-chip resources for I/O
- **CLAMP_HOLD / CLAMP_RELEASE**
 - Hold pins for in-situ on-chip tests
- **IC_RESET**
 - Reset IC blocks through JTAG
- **BSDL for internal JTAG TDR registers**
 - For BIST/PLLs/SERDES/ IP blocks
- **MNEMONICS for JTAG registers**
 - Easy to remember words
Configurable I/O

- The complexity and variation of I/O cells as well as the ICs has greatly increased
- Safe operating voltage ranges of transistors reduced
- I/Os are often configurable for the electrical characteristics such as power levels, drive strength, VIL/VIH, impedance, etc.
- Unused I/O may be configured to be power downed and to not actually be capable of receiving logic values placed on the pin for lower power modes
- In both mission and test modes, I/Os often require configuration before they can be used
Boundary Scan Operation Failures

- I/O cannot correctly drive or receive a logic 1 or 0 until the correct configuration for the given instance is loaded and known.
- Mismatched configurations of I/Os on a board could cause a driven logic 1 to be received as a logic 0.
- In mission mode, a powered-off I/O analog cell cannot SAMPLE the pin value to the BSR.
- Until an Initialization Procedure is completed to program or configure the I/O, none of 1149.X instructions which control or observe the pins can be reliably depended on to correctly operate.
New 1149.1-2011 Instructions

- 2 instructions:
 - INIT_SETU (optional INIT_DATA TDR)
 - INIT_RUN (optional INIT_STATUS TDR)
 - Run after POR, before EXTEST
 - NOT dependent on RTI TAP state

- BSDL to document the data fields of INIT_DATA) with optional mnemonics for field values, Completion time, and optional expected results (format, content TBD)

- Side file to specify per chip instance initialization data and expected results
BSDL Updates for Initialization

- BSDL will have new Attributes and Keywords for Initialization
- Update `INSTRUCTION_OPCODE` to add `INIT_SETUP` and `INIT_RUN`
- Update `REGISTER_STATUS` to add `INIT_DATA` and `INIT_STATUS`
- Create `REGISTER_MNEMONICS` Attribute to describe optional mnemonics for data fields
- Create `REGISTER_FIELDS` to define the subfields of the `INIT_DATA` or `INIT_STATUS` register sub-fields
Initialization of Complex I/Os
Overview of IEEE P1149.8.1

- IEEE Standard P1149.8.1: IEEE Draft Standard for Boundary-Scan-Based Stimulus of Interconnections to Passive and/or Active Components

- Status: Draft
Principles of Capacitive Sensing

Diagram showing the principles of capacitive sensing, including:
- Signal (to Tester)
- Sense plate
- Ball Connections
- Vacant Connector
- Test access pad
- In-Circuit access
- Tester AC Source: stimulates one pin, all others are grounded

NTF Nordic Test Forum

Artur Jutman – Nordic Test Forum 2010, Drammen, NORWAY
Purpose of the Standard

- Use the Boundary Scan infrastructure to deliver an AC stimulus to a single pin or a small number of pins of an IC, while all other signal pins (except TAP pins) “hold” their signals at constant logic 0 or 1
Operation Details

• The toggling takes place during the Run-Test-Idle state
• Toggling only occurs when the SELECTIVE_TOGGLER instruction is active
• The logic value at the output of each boundary scan cell’s Update latch must be the logic value that a non-toggling output pin would drive in EXTEST mode.
• The logic value is shifted in using the normal scan-in and update sequence while a PRELOAD or EXTEST instruction is active.
• The logic values shifted in during SELECTIVE_TOGGLER will be mostly logic 0s, with pin toggling enabled by a logic 1.
Fault Detection

From NTF 2009 slides:

- Pins connected, toggling
- Pin open, toggle
- Pins connected, no toggle
Overview of IEEE P1687

- IEEE Standard P1687: Draft Standard for Access and Control of Instrumentation Embedded within a Semiconductor Device

- Status: Draft (activities started late 2004)
Purpose of the P1687(IJTAG)

- Introduces standardized on-chip test/debug instrument management;
- Dynamic and efficient instrument connection infrastructure
- Enables good diagnostic/test/debug access
- Standardized instrument connectivity language
- Standardized instrument control language
1687 Debug/Test Instruments

Visible In-Line

DAISY-CHAIN

G: SIR

Instrument

G: SIB

Instrument

HIERARCHY

FLAT

G: SIR

Instrument

G: SIB

Instrument

STAR

G: SIB

Instrument

G: SIR

Instrument

G: SIR

Instrument

TDO
The basis of the hardware architecture is the network, which connects TAP (and possibly other interfaces) to the instrument:
Module (<ModuleName>) {
 Attributes { //Miscellaneous constants and attributes, optional
 <attributeName> : <attributeValue>;
 }
 Ports { //Used to list 1687 ports on the module
 <PortName> {...}
 }
 Instances { //Used to list instances of other modules in the module
 <InstanceName> {...}
 }
 Registers { //Used to list registers in the module
 <RegName> {...}
 }
 LogicSignals { //Used to describe muxes and logic driving select ports
 <SignalName> : <type> {...}
 }
}
Limitations of BSDL addressed by ICL

- BSDL is flat
 - ICL is hierarchical

- BSDL can only describe a complete TDR once it is connected to a TAP inside a device
 - ICL allows describing each segments in isolation and how they interconnect
 - Localized verification and hand-offs
 - BSDL ends up with on TDR per scan configuration
 - No description of reused segments

- BSDL only supports scan reconfiguration controlled by central IR register
 - ICL supports scan reconfiguration from other TDR bits

- BSDL does not describes logic between Data signals and the TDRs
 - Action commands only possible at the TDR level
 - No retargetting through logic
Procedural Languages

- **Procedural Description Language – PDL**
 - used for level-0 instructions on instrument level
 - flat and serial language

- **Tool Control Language - TCL**
 - used for instruments whose functionality requires more complex representation
 - has been selected as the level-1 language of IJTAG
New and Emerging Standards Combined

- Instruments
- IEEE P1687
- IEEE 1149.7
- IEEE 1149.1
- IEEE P1149.1-2011
Conclusions

• Shift in the testing paradigm
• Traditional 1149.1 loses test application functions but retains test data communication functions
• JTAG-based test access and test application methods become very complex
• Growing importance of instrument concept in test application
• Signaling issues and I/O configuration becomes critical